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Abstract

Tensioner is a critical mechanism to ensure a constant tension level within a serpentine belt drive that is widely used in

modern passenger vehicles. For a belt drive with n pulleys, generic and explicit formulae about sensitivities of both

frequency and steady harmonic responses are established in terms of system matrices with respect to any design parameter

of the system. Deductions from the formulae results in frequency and steady response sensitivities relative to key tensioner

parameters and the belt speed. Based on sensitivity analysis, optimizations are conducted on tensioner so as to suppress

dynamic responses of the system by frequency detuning. A new approach for searching optimal parameters is put forward

by incorporating sensitivity information into a classical coordinate alternating procedure. Examples are given to validate

the analytical formulae of the frequency sensitivity and to demonstrate the effect of optimization.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A serpentine belt drive is widely used to power all front accessories of the engine in modern passenger
vehicles. In order to keep a constant tension level in the belt, an automatic belt tensioner is usually adopted,
which consists of a tensioner pulley, a tensioner arm and a torsional spring. Although a belt drive is much
quieter compared with other drives such as gear drives and so on, evident vibration might occur at certain
engine speed due to torque fluctuation from the crankshaft.

Typical vibrations can be roughly classified into three categories. The first category is rotational vibration of
the pulleys and tensioner arm around corresponding shafts, where the belt spans act as axial springs [1,2]. The
second one is transverse oscillation of belt spans with various boundary conditions supplied by the pulleys and
the tensioner [3,4]. Lateral vibration of the belt spans is the third class [5]. It should be pointed out that
vibrations of different categories might couple with each other under some circumstances, especially between
rotational vibration of pulleys and transverse vibration of belt spans [6,7].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Being able to capture the coupling between rotational and transversal vibrations and thus more accurately
describe the actual dynamics of the system, hybrid models have become popular for dynamic analysis on
front-end accessory belt drive. A typical hybrid model consists of both discrete variables for the dynamic
behavior of pulleys and the tensioner arm, and continuous variables for the transverse dynamics of the belt
spans.

For a model belt drive with two pulleys and a tensioner, which was decomposed to an independent belt span
and a hybrid subsystem, a Holzer approach with two iteration loops was put forward by Beikmann to
calculate the natural frequencies of the hybrid subsystem [6]. Zhang and Zu adopted this prototypical model
and derived an explicit equation of frequency for free vibration analysis [7]. Starting from the explicit
frequency equation presented in Ref. [7] for the model belt drive, a governing equation on frequency sensitivity
with respect to the tensioner parameters was derived by the present authors [8]. The equation was then
numerically solved for frequency sensitivity relative to some key design parameters. The approach was
validated by results from directly applying a finite difference method to frequency-parameter results obtained
by means of the Holzer approach.

It is obvious that the explicit characteristic equation varies with belt configuration and has to be derived
case by case. Realizing the demerit, Parker [9] put forward a new method for eigensolution to the hybrid model
by introducing Lagrange multipliers to a model of belt drives of n pulleys, where the belt spans adjacent to the
tensioner were discretized. Sensitivity analysis of the frequency was also conducted with respect to various
design parameters by means of a perturbation method.

The limitation of methods based on the explicit characteristic equation also motivates the present work.
For a belt drive with n pulleys, generic and explicit formulae about sensitivities of both frequency
and steady harmonic response are established in terms of system matrices with respect to any design parameter
of the system. Deductions from the formulae results in frequency and steady response sensitivities
relative to key tensioner parameters and the belt speed. Based on sensitivity analysis, optimizations are
conducted on tensioner so as to suppress dynamic response of the system. A new approach for searching
optimal parameters is put forward by combining a classical procedure and sensitivity analysis. Examples are
given to, respectively, validate the analytical formulae of the frequency sensitivity and to demonstrate the
effect of optimization.
2. Modeling and equations of motion

2.1. Model and assumptions

For a practical belt drive, the initial tension is usually far less than the tensile stiffness of the belt, i.e.
P0i5EA. The longitudinal wave speed is much faster than the transverse wave speeds corresponding to lower
order transverse vibrations. In addition, belt-pulley wedging and slip are not taken into consideration for free
vibration analysis of a belt drive under normal operation and small belt motions. Furthermore, in quite a few
researches, the flexural stiffness of the belt is neglected and the belt speed is regarded as constant.

The above assumptions are also adopted in this paper, which render the belt to behave pseudo-statically. As
a sequel, the mass and stiffness of the belt are uniformly distributed and do not change during operation and
vibration. Furthermore, the damping, which plays an important role for the behavior of the system at quasi-
resonant vibration, is neglected for the simplicity of introducing the idea and method. It is also based on the
same consideration to assume the belt speed as constant although the actual speed usually varies.

Fig. 1 schematically shows a serpentine belt drive that has n pulleys including the tensioner pulley. The
pulleys and belt spans are numbered anti-clockwise, with the crankshaft pulley as the first pulley and the span
from pulleys 1 to 2 as the first span, respectively. The tensioner arm is pivoted at one end by a torsional spring
with kr as the stiffness coefficient, and supports at another end pulley j (j ¼ 2 in Fig. 1) that is also called as
tensioner pulley. The constant translating-speed of the belt is notated as c.

The length of the tensioner arm and the moment of inertia of the arm with respect to the pivot are notated
as L and Jt, respectively. For pulley i(i ¼ 1,2,y,n), its radius and the moment of inertia relative to its center
are denoted by ri and Ji.
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Fig. 1. Schematic of a serpentine belt drive.
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The installation angle of the tensioner arm at equilibrium, the rotational angles of the tensioner arm and
pulley i relative to the corresponding equilibrium status, are separately represented by ya, yt and yi. Both ya

and yt are positive for an anti-clockwise rotation, while yi is positive when the rotation agrees with the
translating direction of the belt. The transversal deflection of belt span i is described by wi, which is positive
when the span deforms towards the inner side of the belt drive.

Additionally, two variables, c1 and c2, are defined as shown in Fig. 1, respectively, describe the orientation
of the two belt spans adjacent to the tensioner pulley (pulley j). To be more exact, c1 is the angle from belt
span j�1 to the rotational direction of the tensioner arm, while c2 is the angle from the rotational direction of
the arm to belt span j.

2.2. System decomposition

With the above assumptions and understanding, the equations of motion of the belt spans, tensioner arm
and pulleys can be derived using Hamilton’s principle and Newton’s second law, respectively [6–10].

Looking at the linearized equations of all components, it can be observed that only the transverse vibrations
of belt spans j�1 and j are coupled with the rotational vibration of the tensioner arm and pulleys, but the
vibration of all other belt spans is independent. The whole belt drive system can thus be divided into two sub-
systems as done in literature. The first sub-system consists of n�2 independent belt spans. The second sub-
system, shown as in Fig. 2, includes all pulleys and the two belt spans adjacent to the tensioner pulley, where
other belt spans act as axial springs.

The dynamic characteristics of each belt span within the first subsystem can be readily obtained by directly
using the results given by Sacks [11] or Wickert and Mote [12]. In later sections therefore, the first sub-system
will not be addressed, but the second sub-system is the focus and will be referred as ‘‘system’’ or ‘‘hybrid
subsystem’’ for simplicity.

2.3. Compact equations of free vibration

After the linearized equations of free vibration of all components in the system are obtained, it is assumed
that the free vibrations of the pulleys and tensioner arm are harmonic, i.e.

wt ¼ ~wt cos ot; wi ¼ ~wi cos ot; i ¼ 1; 2; . . . ; n. (1)

In the equation, o is the natural frequency, wt ¼ Lyt and wi ¼ riyi are the free end displacements of the arm and
pulleys due to rotational vibration.
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Fig. 2. Sketch of the second sub-system.

Z.-c. Hou et al. / Journal of Sound and Vibration 317 (2008) 591–607594
Referring to the results of Sack [11] or Wickert and Mote [12], it can be derived for the two belt spans
that [7,10]

wj�1ðx; tÞ ¼
�~wt sin c1

sinðolj�1=c0j�1Þ
sin

ox

c0j�1

 !
cos otþ

ox� olj�1

v0j�1

 !
, (2)

wjðx; tÞ ¼
~wt sin c2

sinðolj=c0jÞ
sin

ox� olj

c0j

 !
cos otþ

ox

v0j

 !
. (3)

Here, ci
0 and vi

0 are the effective wave speed and phase speed of belt span i (i ¼ j�1, j) defined as follows:

c0i ¼
v2i � c2

vi

; v0i ¼
v2i � c2

c
; vi ¼

ffiffiffiffiffiffiffi
P0i

m

r
. (4)

Substituting Eqs. (2) and (3) into the equations of the system, and canceling cosot from each
items in the resulting equation, ultimately lead to a compact-formed equation of motion for all discrete
components as

ðKD � o2MDÞX ¼ 0 (5)

with

X ¼ ~w1 ~w2 � � � ~wn ~wt

h iT
, (6)

KD ¼
Kd h

hT Kt

" #
; MD ¼

Md 0

0 mt

" #
. (7)
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The sub-matrices or entries in Eq. (7) are defined by

Kd ¼

k1 þ kn �k1
..
.

0 �kn

k1 þ k2
..
.

0 0

. .
.

� � � � � �

kn�2 þ kn�1 �kn�1

Sym: kn�1 þ kn

2
6666666664

3
7777777775
, (8)

Md ¼

m1 0 0 ..
.

0 0

0 m2 0 ..
.

0 0

0 0 m3
..
.

0 0

� � � � � � � � � . .
.

� � � � � �

0 0 0 ..
.

mn�1 0

0 0 0 ..
.

0 mn

2
666666666666664

3
777777777777775

; h ¼

0

..

.

kj�1 cos c1

�kj�1 cosc1 þ kj cos c2

�kj cos c2

..

.

0

2
66666666666664

3
77777777777775
, (9)

Kt ¼ Ptðj�1Þ sin
2 c1 cot

olj�1

c0j�1

 !
o

c0j�1
þ Ptj sin

2 c2 cot
olj

c0j

 !
o
c0j

þ kj�1 cos
2 c1 þ kj cos

2 c2 þ ks þ kgr, (10)

mt ¼ Jt=L2 þ m̂j. (11)

In the above expressions, Pti ¼ P0i�mc2 is the tensile force carried by belt span i at steady status,
where P0i is the initial static tension and m is the mass per unit length of the belt. The equivalent mass
of pulley i is denoted as mi ¼ Ji/ri

2, while m̂j is the mass of the tensioner pulley and other related accessories.
The stiffness of belt span i is described by ki ¼ EA/li with li as the span length. Equivalent stiffness ks ¼ kr/L

2

is a transformed stiffness of the torsional spring, and the geometrical stiffness of the tensioner arm kgr is
calculated by

kgr ¼
Ptðj�1Þ sin c1 � Ptj sin c2

L
. (12)

It should be noted in Eq. (9) that (�kj�1 cosc1+kj cosc2) is the jth component of vector h. To be more exact,
if j ¼ 1, kj�1 cosc1 is the nth component of the vector. If j ¼ n on the other hand, �kj cosc2 is the first
component.

2.4. Compact equation of forced vibration

When pulley i(i ¼ 1,2,y,n) and tensioner arm are subjected to external moments Mei and Mt, respectively,
similar approaches as adopted for free vibration analysis can be used to derive the equations governing the
forced vibration of the system [10].

As a tentative trial, all external excitations are assumed to be harmonic, having an identical frequency oe

and being in phase. Assuming the initial phase angles to be zero without loss of generality, it follows

f ei ¼
~f ei cos oet; f et ¼

~f et cos oet. (13)
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Here fei ¼Mei/ri, fet ¼Met/L. The steady responses of all discrete components are thus harmonic and can be
expressed as

wri ¼ ~wri cos oet; wrt ¼ ~wrt cos oet. (14)

According to Eqs. (2) and (3), it can be derived that

wr;ðj�1Þðx; tÞ ¼
�~wrt sin c1

sinðoelj�1=c0j�1Þ
sin

oex

c0j�1

 !
cos oetþ

oex� oelj�1

v0j�1

 !
, (15)

wrjðx; tÞ ¼
~wrt sin c2

sinðoelj=c0jÞ
sin

oex� oelj

c0j

 !
cos oetþ

oex

v0j

 !
. (16)

Combining together the steady responses of all components under forced vibration finally leads to a
compact-formed equation as

ðKD � o2
eMDÞ ~Xr ¼ ~Fe, (17)

where

~Xr ¼ ~wr1 ~wr2 � � � ~wrn ~wrt

h iT
; ~Fe ¼

~f e1
~f e2 � � �

~f en
~f et

h iT
. (18)

With the solutions to Eq. (17), Eq. (14) presents the steady responses of each pulley and the tensioner arm.
The expressions of wr, (j�1)(x, t) and wrj(x, t) are obtained by substituting ~wrt into Eqs. (15) and (16), from
which two variables are extracted as follows:

Ab;ðj�1Þ ¼
�~wrt sin c1

sinðoelj�1=c0j�1Þ
; Abj ¼

~wrt sin c2

sinðoelj=c0jÞ
. (19)

For concise of description in later sections, each variable is called as amplitude of the corresponding belt span
at the forced vibration.
3. Frequency sensitivity

3.1. A generic formula

According to Eq. (5), the normalized modal vector jk corresponding to frequency ok satisfies

ðKD � o2
kMDÞjk ¼ 0. (20)

Differentiating each term in Eq. (20) with respect to design parameter pm, pre-multiplying the subsequent
equation by jT

k , considering the symmetry of matrices KD and MD, and using Eq. (20) ultimately yield

jT
k

qKD

qpm

jk � 2ok

qok

qpm

jT
kMDjk � o2

kj
T
k

qMD

qpm

jk ¼ 0. (21)

Dividing the modal vector jk into two sub-sets as jT
k ¼ ½j

T
k1 jT

k2 � with jk1 ¼ ½ w

Þ

r1 w

Þ

r2 � � � w

Þ

rn�
T and

jk2 ¼ w

Þ

rt, it can then be found that

jT
k

qKD

qpm

jk ¼ jT
k1

qKd

qpm

jk1 þ 2jT
k1

qh
qpm

jk2 þ jT
k2

qKt

qpm

jk2. (22)

Recalling Eq. (10), it is observed that Kt is a function of ok and pm. Denoting Kt ¼ G(ok, pm), it follows

qKt

qpm

¼
qG

qok

qok

qpm

þ
qG

qpm

. (23)
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Substituting Eq. (22) into Eq. (21) and using Eq. (23), result in an explicit expression on the sensitivity of the
natural frequency ok with respect to the design parameter pm,

qok

qpm

¼ jT
k1

qKd

qpm

jk1 þ 2jT
k1

qh
qpm

jk2 þ jT
k2

qG

qpm

jk2

�

�o2
kj

T
k

qMD

qpm

jk

��
2okjT

kMDjk � jT
k2

qG

qok

jk2

� �
. (24)

3.2. Derived expressions

Replacing pm in Eq. (24) in turn by the installation angle ya of the tensioner arm, the arm length L, the
stiffness of the torsional spring kr and the belt speed c, yields in sequence the frequency sensitivities as [10]

qok

qya

¼
jT

k1ðqKd=qyaÞjk1 þ 2jT
k1ðqh=qyaÞjk2 þ jT

k2ðqG=qyaÞjk2

2okjT
kMDjk � jT

k2ðqG=qokÞjk2

, (25)

qok

qL
¼ jT

k1

qKd

qL
jk1 þ 2jT

k1

qh
qL

jk2 þ jT
k2

qG

qL
jk2 � o2

kj
T
k

qMD

qL
jk

� ��
2okjT

kMDjk � jT
k2

qG

qok

jk2

� �
; (26)

qok

qkr

¼
jT

k2ðqG=qkrÞjk2

2okjT
kMDjk � jT

k2ðqG=qokÞjk2

, (27)

qok

qc
¼

jT
k2ðqG=qcÞjk2

2okjT
kMDjk � jT

k2ðqG=qokÞjk2

. (28)

4. Sensitivity of steady harmonic responses

Differentiating Eq. (17) with respect to design parameter pm, finally yields

q ~Xr

qpm

¼ ½KD � o2
eMD�

�1 o2
e

qMD

qpm

�
qKD

qpm

� �
~Xr, (29)

where

q ~Xr

qpm

¼
q~wr1

qpm

q~wr2

qpm

� � �
q~wrn

qpm

q~wrt

qpm

� �T
. (30)

The expression ðqoe=qpmÞ ¼ 0 is adopted during the derivation, as there is no relation between exciting
frequency oe and the parameter pm. From Eqs. (29) and (30), the sensitivity of the amplitude of each discrete
component can be readily computed with respect to any design parameter.

According to Eq. (19), the sensitivity of the amplitudes of both belt spans can be obtained from definition
relative to the design parameter pm as

qAb;ðj�1Þ

qpm

¼ �
q~wrt

qpm

sin c1

sinðoelj�1=c0j�1Þ
�

~wrt cos c1

sinðoelj�1=c0j�1Þ

dc1

dpm

þ
~wrt sin c1 cotðoelj�1=c0j�1Þ

sinðoelj�1=c0j�1Þ

oe

c0j�1

dlj�1

dpm

�
oelj�1

c02j�1

dc0j�1

dpm

 !
, (31)

qAbj

qpm

¼
q~wrt

qpm

sin c2

sinðoelj=c0jÞ
þ

~wrt cos c2

sinðoelj=c0jÞ

dc2

dpm

�
~wrt sin c2 cotðoelj=c0jÞ

sinðoelj=c0jÞ

oe

c0j

dlj

dpm

�
oelj

c02j

dc0j

dpm

 !
. (32)
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The detail expressions of

dc1

dpm

;
dc2

dpm

;
dlj�1

dpm

;
dlj

dpm

;
dc0j�1

dpm

and
dc0j

dpm

can be found from definition and algebraic manipulations [10].

5. Parameter optimization for vibration reduction

5.1. Model for optimization

Low vibration level is always pursued during the design of a belt drive system. Compared with other
components, it is easier to adjust the tensioner so as to achieve a better vibration and noise performance. It is thus
natural to choose the installation angle of the tensioner arm ya, the length of the tensioner arm L and the stiffness
of the torsional spring kr as design variables for optimization. The objective function can then be defined as

c ¼ minGðya;L; krÞ

Gðya;L; krÞ ¼
Pn
i¼1

mið~wriÞ
2
þ mtð~wrtÞ

2
þ mb1ðAb;ðj�1ÞÞ

2
þ mb2ðAbjÞ

2

8><
>: . (33)

Here ~wri, ~wrt, Ab,(j�1) and Abj are, respectively, the amplitudes of pulley i, the tensioner arm and belt spans as
defined before, while mi, mt, mb1 and mb2 are the corresponding weighting factors.

The requirements of no motion interference and possible stiffness of the torsional spring lead to a set of
constraints

yL
apyapyU

a ;

LLpLpLU ;

kL
r pkrpkU

r ;

8><
>: (34)

where the superscripts L and U represent lower and upper limits, respectively.

5.2. Optimal algorithm

A coordinate alternating (CA) path-searching procedure is used for optimization. Modifications are made
by adding additional path-searches and using sensitivity information of the objective function to enhance the
robustness and efficiency of the procedure [10].

5.2.1. Sensitivity and extrema of the objective function

From Eq. (33), the sensitivity of function G(ya,L, kr) with respect to a design variable pmA(ya, L, kr) can be
derived by definition as

dGðya;L; krÞ

dpm

¼
Xn

i¼1

2mi ~wri

q~wri

qpm

� �
þ 2mt ~wrt

q~wrt

qpm

þ 2mb1Ab;ðj�1Þ
qAb;ðj�1Þ

qpm

þ 2mb2Abj

qAbj

qpm

: (35)

The involved sensitivity of the amplitude of each relevant component can be calculated using Eqs. (29), (31)
or (32).

The objective function takes a local minimum when the values of the design variables simultaneously satisfy

dG
dya

¼ 0;
dG
dL
¼ 0;

dG
dkr

¼ 0 (36)

and

d2G

dy2a
40;

d2G
dL2

40;
d2G

dk2
r

40. (37)
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These values, if exist, are the desired ones of optimization, or at least good initials for later optimization. Due
to the limitation on the design variables imposed by the constraints unfortunately, Eqs. (36) and (37) cannot
always be satisfied.

When no combination of the design variables satisfies both sets of equations, suboptimal values of the
design variables should be pursued. The basic idea is schematically demonstrated in Fig. 3, which presents the
two possibilities of a problem with one design variable.
130
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Fig. 3. Extrema on boundary of definition domain.
Suppose that pmax
m is the upper limit of design parameter pm within certain interval, referring to curve 1 in

Fig. 3. If

qG
qpm

����
pm¼pmax

m

40,

Gðpmax
m Þ takes the maximum value in the vicinity of pmax

m . On the other hand, if

qG
qpm

����
pm¼pmax

m

o0,

Gðpmax
m Þ takes the minimal value in the vicinity, as shown by curve 2 in the figure. At the lower boundary of pm,

or in the vicinity of pmin
m , similar discussions can be made. The calculation and evaluation on both the lower

and upper boundaries of a design parameter can be called as boundary analysis.
The bisection method is employed to get the solution to ðqG=qpmÞ ¼ 0. If there is not any value of pm that

satisfies this equation due to constraints, boundary analysis will be performed to determine a suboptimal
solution for the objective function.

5.2.2. Improved CA procedure

A CA method transfers a path-searching problem of multiple dimensions into a series of one-dimension
problems, which is very suitable to optimization problems of a small dimension. With a traditional CA
approach, a one-dimensional path-searching is conducted coordinate by coordinate. A complete searching
loop is finished once all coordinates have been targeted. The values of design variables resulted from the just
finished searching loop are used to start a new round of searching for a better target. The searching procedures
will continue until an optimal solution is found.

In order to increase the possibility of finding a global optimal solution, additional searching path should be
adopted [10]. This procedure with additional searches is called as improved coordinate alternating (ICA)
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method in later sections. The necessity can be explained schematically using a two-dimensional problem as
shown in Fig. 4.
A
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II 

S1

S2

x

y
S2

o

A

B

I

II 

S1

S2

x

y

o

0

Fig. 4. Qualitative comparison to CA and ICA approaches.
For this two-dimensional problem, point A is assumed to be an optimal solution in the sub-domain I while
point B is the global optimal solution. Furthermore, each point within the vicinity of point B or domain II is a
better solution than point A to reach point B. As a result of previous path-searching loops, point A is
obtained. With a traditional CA method as shown in Fig. 4(a), the next searching loop will be conducted in
two directions of S1 and S2, respectively. It is obvious that both searches within the loop will unfortunately
miss domain II.

In Fig. 4(b), additional searches are used after finishing the search along S1 but before searching along S2,
notated as S2

i (i ¼ 0,1,y,m). This way the global optimal, point B, can be found with a higher possibility. The
exact number of additional searches, m, can be determined by trial and error with a compromise between
resolution and efficiency.

Numerical simulations demonstrated that the optimal solution obtained by ICA process might change with
initial values of design variables, although ICA process has a much better robustness in this regard compared
with the traditional CA procedure [10]. In order to decrease such dependence, sensitivity information and
boundary analysis are incorporated into ICA process to construct a new optimal algorithm, whose flowchart
is shown in Fig. 5.
Boundary
analysis  

Solving ∂Γ = 0
∂pm

Yes ICA
procedure 

Initial
parameters Find solutions ? 

Convergent ? End

No
No

Yes 

Fig. 5. Flowchart of the optimal procedure.
6. Examples and discussions

Two examples are presented to exemplify the sensitivity analysis and design optimization for vibration
reduction. In both examples, the Holzer method is used to calculate the natural frequency of the hybrid
subsystem.
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6.1. Frequency sensitivity analysis

For the model belt drive introduced in Ref. [6] and shown in Fig. 6, sensitivity analysis of the first natural
frequency of the hybrid sub-system is conducted with respect to the installation angle ya, arm length L,
stiffness of the torsional spring kr and the translating speed c. Initial values of the design parameters are taken
as ya ¼ �3.751, L ¼ 0.097m, kr ¼ 4.37Nm/rad and c ¼ 0m/s, respectively. The rest parameters are presented
in Table 1.
J1J2

J3

Fig. 6. A model belt drive of three pulleys.

Table 1

Parameters of the model drive of three pulleys

Components (x, y)a(m) ri/L (m) Ji/Jt (kgm
2)

Pulley 1 (0.5525, 0.0556) 0.0889 0.07248

Pulley 2 – 0.0452 0.000293

Pulley 3 (0.0, 0.0) 0.02697 0.000293

Tensioner arm (0.2508, 0.0635) – 0.001165

EA ¼ 170; 000N; m ¼ 0:1029kg=m; P0i ¼ 128:7N; m̂j ¼ 0:302kg

a(x, y) are the coordinates of a pulley center or the tensioner arm pivot. Center coordinates of tensioner pulley are calculated according

to ya and L.
It can be observed clearly from Figs. 7 to 9 that the sensitivity results from explicit formulae derived in this
paper agree very well with those predicted by numerically solving the governing equation of sensitivity and
another direct numerical method [8].
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Fig. 7. Sensitivity of o1 relative to ya. ***, direct numerical method [8]; BBB, solution of governing equation [8]; —, explicit formula.
In Fig. 10, the sensitivity of the first ten natural frequencies of the subsystem is depicted with respect to the
translating speed. It is noted that the sensitivity of the second frequency, which corresponds to a rotational
mode, is almost zero for the whole effective speed range. On the other hand, those frequencies corresponding to
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Fig. 8. Sensitivity of o1 relative to L. ***, direct numerical method [8]; BBB, solution of governing equation [8]; —, explicit formula.
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Fig. 10. Sensitivity of the first 10 frequencies with respect to belt speed c.
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transverse vibration dominated modes have negative sensitivity that is basically proportional to the reciprocal of
the speed. These agree with widely accepted understanding that the frequency of a transverse vibration of the
belt decreases when the belt speed increases. In addition, it can be found that the frequencies of modes 8–10 vary
abruptly at some speeds. The phenomenon reveals mode transfer at these speeds, or more exactly, a transverse
vibration dominated mode changes to a rotational vibration dominated mode, or vice versa.

6.2. Optimization for vibration reduction

An accessory belt drive of a 6-cylinder engine [9] shown in Fig. 11 is used to exemplify the aforementioned
optimal algorithm. The parameters of the system are listed in Table 2.
Table 2

Parameters of a belt drive of multiple pulleys

Component (x, y)a(m) ri/L (m) Ji/Jt (kgm
2)

C/S (0,0) 0.097 0.122

A/C (0.2116,0.009) 0.0625 0.003785

Alt (0.2317,0.1898) 0.0291 0.0043

Idle (0.0796,0.2097) 0.04075 0.00024

P/S (�0.2026,0.2699) 0.06685 0.000596

W/P (�0.2,0.1) 0.08245 0.004596

Ten (�0.0443,0.15745)b 0.03775 0.000043

Tensioner arm (0.033, 0.137) 0.08 0.004601

Other parameters Belt: EA ¼ 111,200N; m ¼ 0.107 kg/m; P0i ¼ 257N

Tensioner: kr ¼ 38.84N �m/rad; ya ¼ 165.251

a(x, y) are the coordinates of a pulley center or the tensioner arm pivot. Center coordinates of tensioner pulley are calculated according

to ya and L.
bThe underlined values are the initial ones for those to be optimized.

Alt

P/S

Ten
Span 6

C/S: crankshaft;         A/C: air conditioner;    Alt: Alternator; 

P/S: power steering;  W/P: water pump;       Ten: tensioner 

W/P

Idle

Span 7

C/S
A/C

Fig. 11. Configuration of a belt drive of multiple pulleys.
Free vibration analysis reveals that the first rotationally dominated mode of the belt drive has a frequency of
o1

r
¼ 39.9Hz. Assume that the idle speed of that engine is 800 rev/min, and that an excitation occurs to the

crankshaft when the engine is at idling status. The exciting frequency can be assumed as oe ¼ ko0 with
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o0 ¼ 40Hz and k ¼ 1,2,y. At the idling speed, it is derived that c ¼ 8.1263m/s. For a linear system, the
amplitude of any component under steady vibration to a harmonic excitation is proportional to the force
amplitude Af. For simplicity but without loss of generality, it is further assumed that oe ¼ o0 and
Af ¼ 10Nm.

It is clear that resonance happens to the belt drive due to such an excitation, as the frequency oe is very
close to the first rotational frequency o1

r . Optimal design will be conducted to reduce the vibration of all
components as much as possible.

As mentioned before, the design variables are parameters relative to the tensioner, i.e. ya, L and kr. The
objective function is defined in Eq. (33) with mi ¼ mt ¼ mb1 ¼ mb2 ¼ 1 for simplicity. Geometrical analysis to
avoid motion interference and a simple consideration about the possible stiffness of the torsional spring lead
to the following constraints:

150pyap180;

0:07pLp0:11;

10pkrp100:

8><
>: (38)

Units of the design variables are degree (1), meter (m) and Nm/rad, respectively. It should be noted that
requirement on the take-up ratio of the tensioner has not been considered during choosing the boundaries of kr.

The values of the design variables resulted from optimization are ya ¼ 1771, L ¼ 0.07m, kr ¼ 10Nm/rad,
which render the first rotational frequency to be o1

r
¼ 38.6Hz. The amplitudes of all components before and

after optimization are presented in Table 3, while the time histories of the responses are plotted in Figs. 12–17.
Table 3

Amplitudes of components before/after optimization

Components C/S A/C Alt Idle P/S W/P Ten Arm Span 6 Span 7

A
origin
i (mm) 7.94 4.67 15.0 17.0 20.5 22.4 6.62 16.3 4.27 14.7

Anew
i (mm) 0.606 0.222 0.909 1.08 1.38 1.55 0.305 1.46 1.16 3.95

Note: (1) A
origin
i represents amplitude of the prototype system while Anew

i is amplitude of the system with optimized parameters.

(2) Amplitudes of both belt spans are defined by Eq. (19).
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Fig. 13. Response of belt span 6 after optimization.
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Fig. 14. Response of belt span 7 before optimization.
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Before discussion, it has to be pointed out that the amplitudes of the belt spans in Table 3 are smaller than
the real maximum values of the dynamic responses of either belt span. This discrepancy comes from the
definition of the amplitude given in Eq. (19), which is adopted for simplicity.

Table 3 and the figures clearly show that by optimization the vibration amplitudes of all components
are dramatically reduced. The reason lies in frequency detuning. The frequency of the first rotationally
dominated mode of the new belt drive, o1

r
¼ 38.6Hz, is away from the exciting frequency oe ¼ 40Hz

compared with o1
r
¼ 39.9Hz of the original drive. Further analysis reveals that 38.6 and 40.6Hz are,

respectively, the minimal and maximal values of the first rotational frequency under the constraint of Eq. (38).
It can also be observed that the belt drive corresponding to o1

r
¼ 40.6Hz has a higher amplitude than the

system with o1
r
¼ 38.6Hz.
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Fig. 16. Responses of discrete components before optimization.

Fig. 15. Response of belt span 7 after optimization.
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7. Summary

The contributions of this paper are as follows:
(1)
 Based on a matrix-formed equation of free vibration of the hybrid subsystem within an undamped multi-
ribbed belt drive, the influence of any design parameter on natural frequencies of the subsystem is revealed
by an explicit formula of frequency sensitivity with respect to the parameter. From this formula, analytical
expressions are, respectively, deduced on the sensitivity of the frequencies with respect to the belt speed,
the length of the tensioner arm and the installation angle of the arm.
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Fig. 17. Responses of discrete components after optimization.
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(2)
 The sensitivity of the steady responses of components of the hybrid subsystem subjected to harmonic
excitation is derived with respect to any design parameter.
(3)
 An optimization approach is put forward by combining sensitivity analysis and an ICA procedure.

(4)
 Given examples validate the explicit formulae of the frequency sensitivity, and demonstrate the

performance of the optimization for vibration reduction.
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